Методы генетики. Медицинская биология Что такое цитогенетический метод

Клиническая генетика. Е.Ф. Давыденкова, И.С. Либерман. Ленинград. «Медицина». 1976 год.

ВЕДУЩИЕ СПЕЦИАЛИСТЫ В ОБЛАСТИ ГЕНЕТИКИ

Амелина Светлана Сергеевна - профессор кафедры по курсу генетики и лабораторной генетики, доктор медицинских наук. Врач генетик высшей квалификационной категории

Дегтерева Елена Валентиновна - ассистент кафедры по курсу генетики и лабораторной генетики, врач-генетик первой категории

Редактор страницы: Крючкова Оксана Александровна

К цитогенетическим методам, применяемым в клинике, относятся определение полового хроматина (X- и У-хроматина) в интерфазных ядрах различных тканей, морфологических особен­ностей хроматина в нейтрофилах периферической крови (бара­банные палочки), а также исследование хромосом на стадии метафазы митоза для определения кариотипа.

Исследование полового хроматина

В 1949 г. Ваrr и Bertram описали в интерфазных ядрах компактное скопление хроматина в виде темноокрашенного тельца, получившее название полового хроматина (sex chromatin). В норме он встречается у женщин, у мужчин он отсутствует или представ­лен в незначительном количестве. У мужчин, имеющих одну Х-хромосому, она всегда активна, у женщин активной является только одна из двух Х-хромосом, вторая находится в неактивном, спирализованном состоянии. Она образует тельце полового хро­матина, которое определяется в интерфазном ядре клетки женского организма. Был разработан простой и быстрый метод определения Х-хроматина в мазках слизистой полости рта с окраской препа­ратов ацетоорсеином. Быстрота и легкость выполнения привели к широкому применению этого метода в медицинской практике.

Метод, до настоящего времени имевшийся в нашем распоряже­нии, выявлял только Х-хроматин, т. е. хроматин, образованный инактивированной Х-хромосомой. С момента опубликования иссле­дований Caspersson с соавт. (1969, 1970) появились возможности определения У-хроматина при помощи люминесцентно-микроско­пического исследования. Работами Zech (1969) было показано, что часть длинного плеча У-хромосомы флюоресцирует при окраши­вании акрихин-ипритом. Затем Pearson с сотр. (1970) обнаружили, что в интерфазном ядре клеток мужчин имеется флюоресцирующее тельце, названное ими F-тельцем, которое у мужчин с кариотипом ХУУ имеется в двойном количестве. Таким образом, появился

простой метод определения У-хроматина в буквальных соскобах, который может быть применен для клинических целей. Это очень удобно для популяционных исследований, так как полное карио- типирование является сложным и трудоемким.

Таким образом, в настоящее время необходимо дифференци­ровать X-хроматин и У-хроматин.

Исследование Х-хроматина. Х-хроматин может быть определен в различных тканях организма: в клетках кожи, слизистой оболочки рта, уретры, влагалища, в клетках крови, в клетках волосяной луковицы, в эпителиальных клетках осадка мочи, в амниотической жидкости и др. Он может быть исследован и в посмертном материале, например в клетках почечных канальцев мертворожденных детей (Н_ П. Бочков и сотр., 1966).

Наиболее распространенным является определение полового хроматина в буккальных мазках по методу Sanderson и Stewart (1961) с одномоментной фиксацией и окраской препаратов ацетоорсеином.

Соскоб берется металлическим шпателем с внутренней поверх­ности щеки, наносится равномерным слоем на предметное стекло, окрашивается одной каплей 1,5% или 2% раствора уксуснокислого ацетоорсеина. Раствор красителя готовится следующим образом: в 45 мл ледяной уксусной кислоты растворяется 1,5-2 г орсеина; раствор нагревается до появления паров, добавляется 55 мл дистиллированной воды и после охлаждения фильтруется. Затем препарат накрывается покровным стеклом, на которое произво­дится легкое надавливание через сложенную в 3-4 слоя марлю или фильтровальную бумагу для удаления лишней краски. На приготовление препарата требуется 2-3 мин. Если препараты просматриваются не сразу, то края покровного стекла покрыва­ются парафином для предупреждения от высыхания. В таком виде препараты можно сохранять в холодильнике до 2 суток.

Ацетоорсеин окрашивает Х-хроматин в темно-фиолетовый цвет, а нуклеоплазму - в бледно-розовый.

Для более контрастного окрашивания Х-хроматина или при отсутствии ацетоорсеина в нашей лаборатории с успехом приме­няется метод окраски, разработанный сотрудником нашей лабо­ратории- А. М. Захаровым. Он основан на метахроматическом окрашивании гетерохроматина красителями тиозиновой группы: метиленовый синий, азур I. Эти красители отечественного про­изводства обычно имеются в достаточном количестве в любой лаборатории.

Применяется 0,2-0,5% раствор одного из вышеуказанных красителей в дистиллированной воде. Разведение проводится из расчета 20-50 мг красителя на 10 мл Н20. Для приготовления одного препарата требуется 2-3 капли раствора. Требуется довести раствор до pH 4,3-4,7 несколькими каплями фосфатного буфера. Употребление буфера не всегда обязательно, так как при растворении краситель сам снижает значение pH до нужной ве­личины. Приготовление препаратов проводится таким же образом, как при ацетоорсеиновом методе.

В отличие от орсеинового метода окрашивание производится без одновременной фиксации кислотой, что предотвращает сморщивание части клеток, поэтому количество Х-хроматина при подсчете превышает в среднем на 5% то количество, которое получается при ацетоорсеиновом методе. При этом методе окрашивания цитоплазма клеток эпителия бесцветна, ядра приобретают бледно-фиолетовый цвет, тельце полового хроматина окрашивается более интенсивно и имеет красноватый цвет.

Для подсчета полового хроматина используются микроскопы МБИ- 3 или МБИ-6 с иммерсионными объективами. Подсчитывается не менее 100 пригодных для анализа ядер, при этом учитываются ядра с ровным контуром, гладкой оболочкой и половым хроматином, прилегающим к ядерной оболочке. Просматривается обычно несколько полей зрения в разных местах препарата.

По количеству телец Х-хроматина можно судить о количестве Х-хромосом. Число Х-хромосом всегда на единицу больше числа телец полового хроматина.

В последние годы получило распространение определение полового хроматина в клетках опухолей. Обнаруживается несоответствие между полом больного и «клеточным полом» опухоли. Выявляется также зависимость между содержанием полового хроматина и чувствительностью опухоли к гормонотерапии.

Исследование У-хроматина. Определение У-хроматина в ядрах клеток на стадии интерфазы может быть осуществлено при применении флюорохромных красителей, таких как акрихин или акрихин-иприт с последующей люминесцентной микроскопией. Таким образом могут быть идентифицированы хромосомы на стадии метафазы митоза, а, также хроматин в ядрах клеток. Акрихин-иприт окрашивает дистальные участки длинных плеч У-хромосомы в метафазе. Кроме того, маленькие округлые флюоресцирующие
тельца наблюдаются в интерфазных ядрах. Они встречаются у лиц мужского пола и могут рассматриваться как У-хроматин. При хромосомных нарушениях типа ХУУ наблюдается два тельца У-хроматина (рис 5). Большие популяционные исследования показали, что наиболее удобными для выявления У-хроматина

Рис. 5. Два флюоресцирующих тельца У-хроматина в интерфазном ядре больного с синдромом 47, XYY.
Окраска акрихин-ипритом.

являются эпителиальные клетки слизистой щеки и лимфоциты периферической крови (Pearson и сотр., 1970; I’olani и Multon, 1971; Robinson, 1971).

Сейчас усиленно изучаются особенности F-хроматина в норме и патологии, вариации в связи с возрастом, различным состоянием организма, корреляцией с размером флюоресцентной части метафазной У-хромосомы и др.

Соскоб эпителия слизистой щеки, полученный при помощи шпателя, наносится ровным слоем на покровное или предметное стекло. Высушенные мазки фиксируют в абсолютном метиловом спирте в течение 2 мин, а затем проводят через нисходящий ряд спиртов (этиловый спирт), выдерживая по 30 с в каждом, до воды. Мазок помещают в буфер Мак-Илвейна (pH 7,0) на 8 мин при 8°. Мазки окрашивают в течение 8-10 мин в 0,005% растворе акри­хин-иприта. Затем препараты споласкивают в свежей водопро­водной воде и дифференцируют в двух-трех порциях цитратно- фосфатного буфера Мак-Илвейна по 1-2 мин и заключают в смесь вода-глицерин (1: 1). Излишки среды тщательно удаляют фильтровальной бумагой и края покровного стекла заливают парафином.

Препараты анализируют под люминесцентным микроскопом (МЛ-2 или МЛ-3, лампа ДРШ 250 с фильтром ФС-2 и СС-2 и барьер­ным фильтром ЖС 18 + ЖЗС 19).

В ядрах клеток буквального эпителия У-хроматин обнаружи­вается в виде ярко светящихся телец на фоне умеренного свече­ния остального хроматина ядра. Общее количество клеток с У-хроматином колеблется от 33 до 92%. Размер одиночного тельца У-хроматина около 0,25-0,8 мкм в диаметре. Но У-хроматин может быть представлен в виде одной, двух, трех и более мелких глыбок в ядре. Интерфазный У-хроматин коррелируется с вариа­циями в размерах флюоресцирующих участков У-хромосом в метафазных пластинках.

Исследование У-хроматина люминесцентно-микроскопическим методом в комплексе с методом определения Х-хроматина дает возможность выявлять набор половых хромосом без кариотипирования. Исследование эндоцервикальных мазков с помощью флюоресцентной методики можно использовать для пренатального определения пола.

Цитогенетический метод

Идеограмма хромосом.

Идиограмма - графическое изображение отдельных хромосом со всеми их структурными характеристиками.

Генетика соматических клеток.

С помощью этих методов изучают наследственность и изменчивость соматических клеток, что в значительной мере компенсирует невозможность применения к человеку метода гибридологического анализа.

Методы генетики соматических клеток, основанные на размножении этих клеток в искусственных условиях, позволяют не только анализировать генетические процессы в отдельных клетках организма, но благодаря полноценности наследственного материала, заключенного в них, использовать их для изучения генетических закономерностей целостного организма.

В связи с разработкой в 60-х гг. XX в. методов генетики соматических клеток человек оказался включенным в группу объектов экспериментальной генетики. Благодаря быстрому размножению на питательных средах соматические клетки могут быть получены в количествах, необходимых для анализа. Они успешно клонируются, давая генетически идентичное потомство. Разные клетки могут, сливаясь, образовывать гибридные клоны. Они легко подвергаются селекции на специальных питательных средах и долго сохраняются при глубоком замораживании. Все это позволяет использовать культуры соматических клеток, полученные из материала биопсий (периферическая кровь, кожа, опухолевая ткань, ткань эмбрионов, клетки из околоплодной жидкости), для генетических исследований человека, в которых используют следующие приемы: 1) простое культивирование, 2) клонирование, 3) селекцию, 4) гибридизацию.

Культивирование позволяет получить достаточное количество клеточного материала для цитогенетических, биохимических, иммунологических и других исследований.

Планирование - получение потомков одной клетки; дает возможность проводить в генетически идентичных клетках биохимический анализ наследственно обусловленных процессов.

Селекция соматических клеток с помощью искусственных сред используется для отбора мутантных клеток с определенными свойствами и других клеток с интересующими исследователя характеристиками.

Гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов, образующих гибридные клетки со свойствами обоих родительских видов. Для гибридизации могут использоваться клетки от разных людей, а также от человека и других животных (мыши, крысы, морской свинки, обезьяны, джунгарского хомячка, курицы).

Гибридные клетки, содержащие два полных генома, при делении обычно «теряют» хромосомы предпочтительно одного из видов. Например, в гибридных клетках «человек - мышь» постепенно утрачиваются все хромосомы человека, а в клетках «человек - крыса» - все, кроме одной, хромосомы крысы, с сохранением всех хромосом человека. Таким образом можно получать клетки с желаемым набором хромосом, что дает возможность изучать сцепление генов и их локализацию в определенных хромосомах.

Постепенная потеря хромосом человека из гибридных клеток параллельно с изучением ферментов дает возможность судить о локализации гена, контролирующего синтез данного фермента, в определенной хромосоме.

Благодаря методам генетики соматических клеток можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Они позволяют судить о генетической гетерогенности наследственных болезней, изучать их патогенез на биохимическом и клеточном уровнях. Развитие этих методов определило возможность точной диагностики наследственных болезней в пренатальном периоде.

Цитогенетический метод используется для диагностики пола и анализа хромосомных заболеваний.

Диагностика пола производится с помощью анализа Х-хроматина в клетках кро­ви или буккального эпителия. Х-хромосома образует, так называемое, тельце Барра, У-хромосома — F-тельце.

Для анализа хромосомных аномалий используют различные методы окраски:

    рутинная окраска — дает возможность выявить нарушения числа хромосом, т.к. они окрашиваются в равномерно черный цвет.

    дифференциальные методы дают возможность окрасить хромосомы неравномерно, выделяя светлые и темные участки. При таком окрашивании можно выявить не только числовые нарушения, но и структурные изменения хромосом.

Показания для использования цитогенетического метода:

1.Если при клиническом обследовании у пробанда обнаружены признаки хрони­ческих болезней, но диагноз не установлен.

2.При диагностике наследственных болезней, характеризующихся хромосом­ной нестабильностью.

3.При определении прогноза потомства, если в родословной имеются лица с хромосомными болезнями.

4.При многократных спонтанных абортах, мертворождениях и наличии несколь­ких детей с врожденными пороками развития.

5.У женщин с нарушением репродуктивной функции неясного генеза.

Биохимический метод используется для:

    установления дифференцированного диагноза заболевания

    выявления гетерозиготности

    в дородовой диагностике

С его помощью выясняют нарушения обмена. Показания к биохимическим исследованиям:

    умственная отсталость

    нарушение психического статуса

    нарушение физического развития костей туловища и конечностей, снижение слуха, зрения, ожирение

    непереносимость отдельных продуктов и лекарств

Амниоцентез — метод забора и исследования околоплодной жидкости. Используется в пренатальной (дородовой) диагностике. Амниоцентез производят после предварите­льного УЗ-исследования с помощью которого определяют положение плаценты, срок беременности, исключают грубые пороки развития плода. Амниоцентез производят, как правило, трансабдоминально (прокол передней брюшной стенки). С помощью данного метода определяют:

    пол плода. Для этого берут 2-5 мл околоплодной жидкости. После центри­фугирования осадок, содержащий слущенные клетки эпителия плода, микрос-копируют для выявления Х- и У-хроматина

    кариотип плода. Это дает возможность определить хромосомные заболевания

    насл. дефекты обмена определяются б/х анализом амниотической жидкости. В случае выявления аномального плода возможно его абортирование, либо лечение внутриутробно или сразу после рождения.

Просеивающие программы (скрининг). Скрининг означает выявление болезни или дефекта развития с помощью тестов, обследований или процедур, дающих быстрый ответ. Основная цель скрининга — ранее выявление заболевания. В настоящее время более 20 заболеваний можно выявить с помощью скрининга, например: ФКУ, дефекты обмена, анемии, дефекты зрения, слуха, поведения, отклонения в росте, синдром Дауна, дефекты нерв­ной трубки и др. ДНТ — к этой группе относятся анэнцефалия и Анэнцефалия — это отсутствие части головного мозга, костей черепа и мягких тканей. Частота встречаемости 1 на 1000 новорожденных. Дети с анэнцефалией погибают вскоре после рождения вследствие дыхательных расстройств или при­соединения инфекции.

Spina bifita — это не закрытие позвоночного канала с отсутствием отдельных частей позвонков, в области дефекта спинной мозг деформирован и оказывается открытым или расположенным непосредственно под кожей. Патология встречается у 1 из 1000 новорожденных, а скрытый дефект лишь одного позво­нка — примерно у каждого десятого человека. Прогноз для жизни зависит от протяженности дефекта позвоночника, наличия спинномозговых грыж.

Цитогенетический метод

Основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом - 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных.

Материалом для кариотипического анализа чаще всего являются лимфоциты крови. Кровь берется у взрослых из вены, у новорожденных - из пальца, мочки уха или пятки. Лимфоциты культивируются в особой питательной среде, в состав которой, в частности, добавлены вещества, «заставляющие» лимфоциты интенсивно делиться митозом. Через некоторое время в культуру клеток добавляют колхицин. Колхицин останавливает митоз на уровне метафазы. Именно во время метафазы хромосомы являются наиболее конденсированными. Далее клетки переносятся на предметные стекла, сушатся и окрашиваются различными красителями. Окраска может быть а) рутинной (хромосомы окрашиваются равномерно), б) дифференциальной (хромосомы приобретают поперечную исчерченность, причем каждая хромосома имеет индивидуальный рисунок). Рутинная окраска позволяет выявить геномные мутации, определить групповую принадлежность хромосомы, узнать, в какой группе изменилось число хромосом. Дифференциальная окраска позволяет выявить хромосомные мутации, определить хромосому до номера, выяснить вид хромосомной мутации.

В тех случаях, когда необходимо провести кариотипический анализ плода, для культивирования берутся клетки амниотической (околоплодной) жидкости - смесь фибробластоподобных и эпителиальных клеток.

К числу хромосомных заболеваний относятся: синдром Клайнфельтера, синдром Тернера-Шерешевского, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47, ХХY) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).



Синдром Тернера-Шерешевского (45, Х0) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Тернера-Шерешевского имеют малый рост, тело диспропорционально - более развита верхняя часть тела, плечи широкие, таз узкий - нижние конечности укорочены, шея короткая со складками, «монголоидный» разрез глаз и ряд других признаков.

Синдром Дауна - одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47; 21, 21, 21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция р-плеча аутосомы №5 приводит к развитию синдрома «крик кошки». У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный «мяукающий» тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Биохимический метод

Позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

42. Пренатальная диагностика врожденных и наследственных болезней - это комплексная отрасль медицины, которая быстро развивается. Она использует и ультразвуковую диагностику (УЗИ), и оперативную технику (хорионбиопсию, амнио-и кордоцентез, биопсию мышц и кожи плода), и лабораторные методы (цитогенетические, биохимические, молекулярно-генетические).

Пренатальная диагностика имеет исключительно важное значение при медико-генетическом консультировании, поскольку она позволяет перейти от вероятного к однозначному прогнозированию здоровья ребенка в семьях с генетическими осложнениями. В настоящее время пренатальная диагностика осуществляется в I и II триместрах беременности, то есть в периоды, когда в случае выявления патологии еще можно прервать беременность. На сегодня возможна диагностика практически всех хромосомных синдромов и около 100 наследственных болезней, биохимический дефект при которых установлен достоверно.

Пренатальная диагностика - комплексная дородовая диагностика с целью обнаружения патологии на стадии внутриутробного развития. Позволяет обнаружить более 98 % плодов с синдромом Дауна (трисомия 21); трисомии 18 (известной как синдром Эдвардса) около 99,9 %; трисомии 13 (синдром Патау) около 99.9%, более 40 % нарушений развития сердца и др. В случае наличия у плода болезни родители при помощи врача-консультанта тщательно взвешивают возможности современной медицины и свои собственные в плане реабилитации ребёнка. В результате семья принимает решение о судьбе данного ребёнка и решает вопрос о продолжении вынашивания или о прерывании беременности.

К пренатальной диагностике относится и определение отцовства на ранних сроках беременности, а также определение пола плода.

Показания для пренатальной диагностики : наличие в семье наследственного заболевания; возраст матери старше 37 лет; носительство матерью гена Х-сцепленного рецессивного заболевания; наличие в прошлом спонтанных абортов в ранние сроки беременности, мертворождений, детей с пороками развития, хромосомной патологией; наличие структурных перестроек хромосом у одного из родителей; гетерозиготность обоих родителей по одной паре аллелей при патологии с аутосомно-рецессивным типом наследования; зона повышенного радиационного фона.

В настоящее время применяются непрямые и прямые методы пренатальной диагностики. При непрямых методах обследуют беременную (акушерско-гинекологические методы, сыворотка крови на альфа-фетопротеин), при прямых - плод.

К прямым методам, которые проходят без нарушения тканей, без хирургического вмешательства относится ультрасонография. К прямым методом, которые проходят с с нарушением целостности тканей – хорионбиопсия, амниоцентез, кордоцентез и фетоскопия.

Ультрасонография, эхография – это использование ультразвука для получения изображения плода и его оболочек, состояния плаценты.

На 5-й неделе беременности уже можно получить изображение оболочек эмбриона, к концу 6-й недели можно зарегистрировать его сердечную деятельность, а на 7-й неделе можно получить изображение и самого будущего ребенка.

В первые два месяца беременности УЗИ еще не позволяет выявить аномалии развития плода, но может определить его жизнеспособность. На 12 - 20-й неделе беременности уже возможна диагностика близнецовой беременности, локализации плаценты, отсутствия головного или спинного мозга, дефектов костной системы, закрытия невральной трубки, заращение естественных каналов желудочно-кишечного тракта.

Метод безопасен, поэтому продолжительность исследования не ограничена, и его можно применять повторно. При нормальном течении беременности проводят двукратное УЗИ, а при беременности с риском осложнений оно проводится с интервалами в 2 недели.

УЗИ плода обязательно при: наличии у родителей и ближайших родственников врожденных пороков развития; экстрагенитальных заболеваниях у беременной, например, гипертонической болезни, сахарного диабета, тиреотоксикоза, порока сердца, ожирения и др.; наличии мертворожденных детей, перинатальной смерти двух и более детей; угрозе прерывания беременности, кровотечении; недостаточной прибавке массы тела беременной; несоответствии размеров матки сроку беременности; многоплодии; фибромиоме матки.

В целом УЗИ позволяет получить данные о размерах плода (длина туловища, бедра, плеча, диаметр головы), о наличии у него дисморфии, о работе сердца, об объеме жидкости в зародышевой оболочке и размерах плаценты.

УЗИ позволяет обнаружить у плода и некоторые пороки развития. Например, отсутствие головного и спинного мозга, чрезмерное количество спинномозговой жидкости в полости черепа, аномалии структуры почек, неправильное развитие конечностей, легких, множественные врожденные пороки, пороки сердца, отек плода и плаценты.

Эхографияплаценты позволяет установить ее расположение, наличие отслойки ее отдельных участков, кисты, признаки старения, истончение или утолщение плаценты.

Допплеровское ультразвуковое сканирование, цветная допплерометрия отражают кровообращение плода.

ЯМР-томография плода позволяет выявить структурные аномалии, не обнаруживаемые при УЗИ, например, малые аномалии мозга, туберозный склероз, аномалии структуры почек и др.

Часто используют три метода исследования: уровня альфа-фетопротеина (особый эмбриональный белок), содержания хорионического гонадотропина (гормон, вырабатываемый плацентой в период беременности) и свободного эстриола (женский половой гормон) в крови женщины во 2-м триместре беременности. Отклонения этих показателей от нормы служат индикаторами высокого риска для плода.

Содержание альфа-фетопротеина в биологических жидкостях повышено при множественных пороках развития плода, спинномозговой грыже, чрезмерном количестве спинномозговой жидкости в области черепа, отсутствии головного или спинного мозга, пороках развития желудочно-кишечного тракта, дефектах передней брюшной стенки, аномалиях почек, фетоплацентарной недостаточности (недостаточной работе плаценты), задержке развития плода, многоплодной беременности, преэклампсии, резус-конфликте, вирусном гепатите В.

Концентрация альфа-фетопротеина в крови беременной снижена в случаях хромосомных болезней у плода, например, болезни Дауна, или наличия у беременной сахарного диабета I типа.

В настоящее время исследование альфа-фетопротеина проводится в 1-м триместре беременности одновременно с определением специфического для беременных белка А, что позволяет диагностировать болезнь Дауна и некоторые другие хромосомные аномалии у плода уже на 11 - 13-й неделях.

Хорионический гонадотропин (ХГ) определяется уже на 8 - 9-й дни после зачатия. При исследовании крови женщины во 2-м триместре беременности повышение уровня ХГ свидетельствует о задержке внутриутробного развития плода, высоком риске его гибели, отслойке плаценты, и о других видах фетоплацентарной недостаточности (нарушение работы плаценты).

Исследование уровня белка беременности I (Schwangerschaft protein I) в плазме крови женщин уже в 1-м триместре беременности служит индикатором хромосомных болезней плода.

Хорионбиопсия – это взятие ткани хориона (зародышевая оболочка). Проводится между 8-й и 10-й неделями. Ткань используется для цитогенетических и биохимических исследований, анализа ДНК. С помощью этого метода можно выявлять все виды мутаций (генные, хромосомные и геномные).

Значительным преимуществом хорионбиопсии является то, что она может быть использована на ранних этапах развития плода. Т. е. если выявятся отклонения в развитии плода и родители решат прервать беременность, то аборт на 10 – 12 неделе менее опасен, чем на 18 - 20-й неделе, когда становятся известны результаты амниоцентеза.

Амниоцентез – получение амниотической жидкости (жидкость вокруг зародыша) и клеток плода для анализа. Получение материала возможно на 16-й неделе беременности.

Основные показания для амниоцентеза общие: возраст беременной более 35 лет;нарушения нормы уровней альфа-фетопротеина, хорионичеокого гонадотропина и свободного эстриола в крови беременной;наличие нескольких серьезных факторов риска осложнений беременности.

Отдельные: мертворождения, перинатальная смертность;рождение предыдущего ребенка с хромосомными болезнями или с дисморфическими признаками;хромосомный сбалансированный мозаицизм у родителей;синдром ломкой Х-хромосомы у ближайших родственников;определение пола плода при риске наследственных Х-сцепленных заболеваний (гемофилия, иммунодефицит и др.);наследственные болезни обмена веществ;воздействие тератогенных агентов на организм беременной в критические периоды развития плода;задержка внутриутробного развития и дисморфия плода по данным УЗИ;риск внутриутробных инфекций (краснуха, цитомегалия, токсоплазмоз).

Осложнения при этом методе исследования не превышают 1 %.

Амниотическая жидкость используется для биохимических исследований, которые выявляют генные мутации. А клетки используются для анализа ДНК (выявляет генные мутации), цитогенетического анализа и выявления Х- и Y-хроматина (диагностирует геномные и хромосомные мутации).

Биохимические исследования амниотической жидкости могут дать ценную информацию. Например, диагностика адреногенитального синдрома (нарушения синтеза гормонов корой надпочечников и работы системы гипаталамус - гипофиз – яичники) у эмбриона возможна уже на 8-й неделе.

Исследование спектра аминокислот амниотической жидкости позволяет выявить некоторые наследственные болезни обмена веществ у плода, например, аргинин-янтарную ацидурию, цитруллинурию и др.

Исследование амниотической жидкости применяется для выявления хромосомных отклонений от нормы, определения активности ферментов.

Кордоцентез – взятие крови из пуповины. Материал используется для цитогенетических, молекулярно-генетических и биохимических исследований. Проводится с 18-й по 22-ю неделю.

Преимущество кордоцентеза по сравнению с амниоцентезом заключается в том, что берется кровь плода, что имеет решающее значение для диагностики внутриутробных инфекций, например, ВИЧ, краснухи, цитомегалии, парвовируса В19.

Однако показания для проведения кордоцентеза ограничены в связи с высоким риском осложнений, таких как внутриутробная гибель плода (до 6 %), недонашивание беременности (9 %).

Фетоскопия - осмотр плода фиброоптическим эндоскопом, введенным в зародышевую оболочку через переднюю стенку матки. Метод позволяет осмотреть плод, пуповину, плаценту и произвести биопсию.

Фетоскопия имеет очень ограниченное применение, т. к. сопровождается высоким риском прерывания беременности и технически сложна.

Современные технологии позволяют осуществлять биопсию кожи, мышц, печени плода. Материал используется для диагностики тяжелых наследственных заболеваний, например, генодерматозов, мышечных дистрофий, гликогенозов и др.

Риск прерывания беременности при применении методов пренатальной диагностики, нарушающих целостность тканей, составляет 1 - 2%.

Везикоцентез – прокол стенки мочевого пузыря плода для получения его мочи. Материал используется для исследования в случаях серьезных заболеваний и пороков развития органов мочевой системы.

Доимплантационная диагностика наследственных болезней стала возможной благодаря появлению экстракорпорального оплодотворения и использованию множественных копий эмбриональной ДНК.

Существует технология для выявления таких болезней, как Тея-Сакса, гемофилия, миодистрофия Дюшенна, фрагильная Х-хромосома и др. Однако она доступна немногим очень крупным центрам и дорого стоит.

Разрабатываются методы выделения клеток плода, циркулирующих в крови беременной, для проведения цитогенетических, молекулярно-генетических и иммунологических анализов.

Развитие и распространение методов пренатальной диагностики наследственных заболеваний позволят значительно снизить частоту наследственной патологии новорожденных.

Основной метод генетики - гибридологический (скрещивание определенных организмов и анализ их потомства, этот метод использовал Г.Мендель).


Гибридологический метод не подходит для человека по морально-этическим соображениям, а так же из-за малого количества детей и позднего полового созревания. Поэтому для изучения генетики человека применяют косвенные методы.


1) Генеалогический - изучение родословных. Позволяет определить закономерности наследования признаков, например:

  • если признак проявляется в каждом поколении, то он доминантный (праворукость)
  • если через поколение - рецессивный (голубой цвет глаз)
  • если чаще проявляется у одного пола - это признак, сцепленный с полом (гемофилия, дальтонизм)

2) Близнецовый - сравнение однояйцевых близнецов, позволяет изучать модификационную изменчивость (определять воздействие генотипа и среды на развитие ребенка).


Однояйцевые близнецы получаются, когда один зародыш на стадии 30-60 клеток делится на 2 части, и каждая часть вырастает в ребенка. Такие близнецы всегда одного пола, похожи друг на друга очень сильно (потому что у них совершенно одинаковый генотип). Отличия, которые возникают у таких близнецов в течение жизни, связаны с воздействием условий окружающей среды.


Разнояйцевые близнецы (не изучаются в близнецовом методе) получаются, когда в половых путях матери одновременно оплодотворяются две яйцеклетки. Такие близнецы могут быть одного или разного пола, похожи друг на друга как обычные братья и сестры.


3) Цитогенетический - изучение под микроскопом хромосомного набора - числа хромосом, особенностей их строения. Позволяет выявлять хромосомные болезни. Например, при синдроме Дауна имеется одна лишняя 21-ая хромосома.

4) Биохимический - изучение химического состава организма. Позволяет узнать, являются ли пациенты гетерозиготами по патологическому гену. Например, гетерозиготы по гену фенилкетонурии не болеют, но в их крови можно обнаружить повышенное содержание фенилаланина.

5) Популяционно-генетический - изучение доли различных генов в популяции. Основа на законе Харди-Вайнберга. Позволяет расчитать частоту нормальных и патологичнеских фенотипов.

Выберите один, наиболее правильный вариант. С помощью какого метода выявляется влияние генотипа и среды на развитие ребенка
1) генеалогического
2) близнецового
3) цитогенетического
4) гибридологического

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Близнецовый метод исследования используют
1) цитологи
2) зоологи
3) генетики
4) селекционеры
5) биохимики

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генетики, используя генеалогический метод исследования, составляют
1) генетическую карту хромосом
2) схему скрещивания
3) родословное древо
4) схему предковых родителей и их родственные связи в ряде поколений
5) вариационную кривую

Ответ


1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генеалогический метод исследования используют для установления
1) доминантного характера наследования признака
2) последовательности этапов индивидуального развития
3) причин хромосомных мутаций
4) типа высшей нервной деятельности
5) сцепленности признака с полом

Ответ


2. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Генеалогический метод позволяет определить
1) степень влияния среды на формирование фенотипа
2) влияние воспитания на онтогенез человека
3) тип наследования признака
4) интенсивность мутационного процесса
5) этапы эволюции органического мира

Ответ


3. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Генеалогический метод используют для определения


3) закономерностей наследования признаков
4) числа мутаций
5) наследственного характера признака

Ответ


4. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генеалогический метод используют для
1) изучения влияния воспитания на онтогенез человека
2) получения генных и геномных мутаций
3) изучения этапов эволюции органического мира
4) выявления наследственных заболеваний в роду
5) исследования наследственности и изменчивости человека

Ответ


5. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генеалогический метод используют для определения
1) степени влияния факторов среды на формирование признака
2) характера наследования признака
3) вероятности передачи признака в поколениях
4) структуры хромосом и кариотипа
5) частоты встречаемости патологичного гена в популяции

Ответ


Выберите один, наиболее правильный вариант. Основной метод изучения закономерностей наследования признаков
1) генеалогический
2) цитогенетический
3) гибридологический
4) близнецовый

Ответ


Выберите один, наиболее правильный вариант. Для определения характера влияния генотипа на формирование фенотипа у человека анализируется характер проявления признаков
1) в одной семье
2) в больших популяциях
3) у идентичных близнецов
4) у разнояйцовых близнецов

Ответ


Установите соответствие между характеристикой и методом: 1) цитогенетический, 2) генеалогический. Запишите цифры 1 и 2 в правильном порядке.
А) исследуется родословная семьи
Б) выявляется сцепление признака с полом
В) изучается число хромосом на стадии метафазы митоза
Г) устанавливается доминантный признак
Д) определяется наличие геномных мутаций

Ответ


Выберите один, наиболее правильный вариант. Метод, позволяющий изучать влияние условий среды на развитие признаков
1) гибридологический
2) цитогенетический
3) генеалогический
4) близнецовый

Ответ


Выберите один, наиболее правильный вариант. Какой метод генетики используют для определения роли факторов среды в формировании фенотипа человека
1) генеалогический
2) биохимический
3) палеонтологический
4) близнецовый

Ответ


Выберите один, наиболее правильный вариант. Какой метод используют в генетике при изучении геномных мутаций
1) близнецовый
2) генеалогический
3) биохимический
4) цитогенетический

Ответ


1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Цитогенетический метод используют для определения
1) степени влияния среды на формирование фенотипа
2) наследования сцепленных с полом признаков
3) кариотипа организма
4) хромосомных аномалий
5) возможности проявления признаков у потомков

Ответ


2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Цитогенетический метод позволяет изучить у человека
1) наследственные заболевания, связанные с геномными мутациями
2) развитие признаков у близнецов
3) особенности обмена веществ его организма
4) его хромосомный набор
5) родословную его семьи

Ответ


3. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Цитогенетический метод исследования генетики человека
1) основан на составлении родословных человека
2) используется для изучения характерна наследования признака
3) заключается в микроскопическом исследовании структуры хромосом и их количества
4) используется для выявления хромосомных и геномных мутаций
5) помогает установить степень влияния среды на развитие признаков

Ответ


Все приведённые ниже методы исследования, кроме двух, используются для изучения наследственности и изменчивости человека. Определите эти два метода, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) генеалогически
2) гибридологический
3) цитогенетический
4) экспериментальный
5) биохимический

Ответ


Выберите из текста три предложения, которые дают верную характеристику методам исследования генетики и наследственности человека. Запишите цифры, под которыми они указаны. (1) Генеалогический метод, используемый в генетике человека, основан на изучении родословного древа. (2) Благодаря генеалогическому методу был установлен характер наследования конкретных признаков. (3) Близнецовый метод позволяет прогнозировать рождение однояйцевых близнецов. (4) При использовании цитогенетического метода устанавливают наследование у человека групп крови. (5) Характер наследования гемофилии (плохой свёртываемости крови) был установлен путём анализа родословных как Х-сцепленный рецессивный ген. (6) Гибридологический метод позволяет изучить распространение болезней по природным зонам Земли.

Ответ


Ниже приведен перечень методов генетики. Все они, кроме двух, относятся к методам генетики человека. Найдите два термина, «выпадающих» из общего ряда, и запишите цифры, под которыми они указаны.
1) близнецовый
2) генеалогический
3) цитогенетический
4) гибридологический
5) индивидуального отбора

Ответ


1. Выберите два верных варианта ответа из пяти и запишите цифры, под которыми они указаны. Биохимический метод исследования используется для:
1) изучения кариотипа организма
2) установления характера наследования признака
3) диагностике сахарного диабета
4) определения дефектов ферментов
5) определения массы и плотности органоидов клетки

Ответ


2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Биохимический метод исследования используется для
1) определения степени влияния среды на развитие признаков
2) изучения обмена веществ
3) изучения кариотипа организма
4) исследования хромосомных и геномных мутаций
5) уточнения диагнозов сахарного диабета или фенилкетонурии

Ответ


1. Выберите три варианта. Сущность гибридологического метода заключается в
1) скрещивании особей, различающихся по нескольким признакам
2) изучении характера наследования альтернативных признаков
3) использовании генетических карт
4) применении массового отбора
5) количественном учёте фенотипических признаков потомков
6) подборе родителей по норме реакции признаков

Ответ


2. Выберите два верных ответа. К особенностям гибридологического метода относят
1) подбор родительских пар с альтернативными признаками
2) наличие хромосомных перестроек
3) количественный учёт наследования каждого признака
4) определение мутантных генов
5) определение числа хромосом в соматических клетках

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие методы научного исследования используются для диагностики сахарного диабета и выявления характера его наследования?
1) биохимический
2) цитогенетический
3) близнецовый
4) генеалогический
5) исторический

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. В генетике человека используют методы
1) цитогенетический
2) генеалогический
3) индивидуального отбора
4) гибридологический
5) полиплоидизации

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Для изучения наследственных болезней человека исследуют клетки околоплодной жидкости методами
1) цитогенетическим
2) биохимическим
3) гибридологическим
4) физиологическим
5) сравнительно-анатомическим

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Популяционно-статистический метод исследования генетики человека используется для
1) расчета частоты встречаемости нормальных и патологических генов
2) изучения биохимических реакций и обмена веществ
3) предсказания вероятности генетических аномалий
4) определения степени влияния среды на развитие признаков
5) изучения структуры генов, их количества и расположения в молекуле ДНК

Ответ


Установите соответствие между примерами и методами выявления мутаций: 1) биохимический, 2) цитогенетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) утрата Х-хромосомы
Б) образование бессмысленных триплетов
В) появление дополнительной хромосомы
Г) изменение структуры ДНК в пределах гена
Д) изменение морфологии хромосомы
Е) изменение числа хромосом в кариотипе

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Близнецовый метод исследования генетики человека используется для
1) изучения характера наследования признака
2) определения степени влияния среды на развитие признаков
3) предсказания вероятности рождения близнецов
4) оценки генетической предрасположенности к различным заболеваниям
5) расчета частоты встречаемости нормальных и патологических генов
1) установление характера наследования различных признаков
2) микроскопическое исследование числа и структуры хромосом
3) биохимический метод
4) цитогенетический метод
5) близнецовый метод
6) изучение родственных связей между людьми
7) изучение химического состава крови
8) выявление нарушения обмена веществ

Ответ

© Д.В.Поздняков, 2009-2019

Цитогенетика – раздел генетики, изучающий закономерности наследственности и изменчивости на уровне клетки и субклеточных структур, главным образом хромосом. Цитогенетические методы предназначены для изучения структуры хромосомного набора или отдельных хромосом. Основа цитогенетических методов - микроскопическое изучение хромосом человека. Микроскопические методы исследования хромосом человека начали использоваться в конце XIX века. Термин «цитогенетика» введен в 1903 г. Уильямом Саттоном.

Цитогенетические исследования стали широко использоваться с начала 20 -х гг. XX в. для изучения морфологии хромосом человека, подсчета хромосом, культивирования лейкоцитов для получения метафазных пластинок. В 1959 г. французские ученые Д. Лежен, Р. Тюрпен и М. Готье установили хромосомную природу болезни Дауна. В последующие годы были описаны многие другие хромосомные синдромы, часто встречающиеся у человека. В 1960 году Р. Мурхед с соавт. разработали метод культивирования лимфоцитов периферической крови для получения метафазных хромосом человека, что позволило обнаруживать мутации хромосом, характерные для определенных наследственных болезней.

Применение цитогенетических методов: изучение нормального кариотипа человека, диагностика наследственных заболеваний, связанных с геномными и хромосомными мутациями, исследование мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др. Обьектом цитогенетичеких исследований могут быть делящиеся соматические, мейотические и интерфазные клетки.

ЦИТОГЕНЕТИЧЕСКИЕ МЕТОДЫ Световая микроскопия Электронная микроскопия Конфокальная микроскопия Люминесцентная микроскопия Флуоресцентная микроскопия

Показания для проведения цитогенетических исследований Подозрение на хромосомную болезнь по клинической симптоматике (для подтверждения диагноза) Наличие у ребенка множественных ВПР, не относящихся к генному синдрому Многократные спонтанные аборты, мертворождения или рождения детей с ВПР Нарушение репродуктивной функции неясного генеза у женщин и мужчин Существенная задержка умственного и физического развития у ребенка

Пренатальная диагностика (по возрасту, в связи с наличием транслокации у родителей, при рождении предыдущего ребенка с хромосомной болезнью) Подозрение на синдромы, характеризующиеся хромосомной нестабильностью Лейкозы (для дифференциальной диагностики, оценки эффективности лечения и прогноза лечения) Оценка мутагенных воздействий различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др.

В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом.

Цитогенетичекие исследования соматических клеток Получение препаратов митотических хромосом Окраска препаратов (простые, дифференциальные и флуоресцентные) Молекулярно-цитогенетические методы – метод цветной гибридизации in situ (FISH)

К цитогенетическим методам, применяемым в клинической практике, относятся: - классические методы кариотипирования; - молекулярно-цитогенетические методы. До недавнего времени диагностика хромосомных болезней базировалась на использовании традиционных методов цитогенетического анализа.

Для изучения хромосом чаще всего используют препараты кратковременной культуры крови, а также клетки костного мозга и культуры фибробластов. Кровь с антикоагулянтом центрифугированиют для осаждения эритроцитов, а лейкоциты инкубируют в культуральной среде 2 -3 дня. К образцу крови добавляют фитогемагглютинин, так как он ускоряет агглютинацию эритроцитов и стимулирует деление лимфоцитов. Наиболее подходящая фаза для исследования хромосом - метафаза митоза, поэтому для остановки деления лимфоцитов на этой стадии используют колхицин. Добавление этого препарата к культуре приводит к увеличению доли клеток, находящихся в метафазе, то есть в той стадии клеточного цикла, когда хромосомы видны лучше всего. Каждая хромосома реплицируется и после соответствующей окраски видна в виде двух хроматид, прикреплённых к центромере, или центральной перетяжке. Затем клетки обрабатывают гипотоническим раствором хлорида натрия, фиксируют и окрашивают. Для окраски хромосом чаще используют краситель Романовского -Гимзы, 2% ацеткармин или 2% ацетарсеин. Они окрашивают хромосомы целиком, равномерно (рутинный метод) и могут быть использованы для выявления численных аномалий хромосом

Денверская классификация хромосом человека (1960). Группа А (1 -3) – три пары самых крупных хромосом: две метацентрические и 1 субметацентрическая. Группа В – (4 -5) – две пары длинных субметацентрических хромосом. Группа С (6 -12) – 7 пар субметацентрических аутосом среднего размера и Х-хромосома. Группа D (13 -15) – три пары средних акроцентрических хромосом. Группа E (16 -18) – три пары метацинтрическая и субметацентрические хромосомы. Группа F (19 -20) – две пары маленьких метацентрических хромосом. Группа G (21 -22 и Y) – две пары мелких акроцентрических хромосом и Y-хромосома.

1. Рутинная (равномерная) окраска 2. Используется для анализа числа хромосом и выявления структурных нарушений (аберраций). При рутинной окраске достоверно можно идентифицировать только группу хромосом, при дифференциальной – все хромосомы

Идиограмма хромосом человека в соответствии с Денверской и Парижской классификациями A B C E D F G

Методы дифференциальной окраски хромосом Q-окрашивание - окрашивание по Касперссону акрихинипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом. G-окрашивание - модифицированное окрашивание по Романовскому - Гимзе. Чувствительность выше, чем у Qокрашивания, поэтому используется как стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы) R-окрашивание - используется акридиновый оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашиванию. C-окрашивание - применяется для анализа центромерных районов хромосом, содержащих конститутивный гетерохроматин. T-окрашивание - применяют для анализа теломерных районов хромосом.

Участки сильной и слабой конденсации по длине хромосомы специфичны для каждой хромосомы и имеют разную интенсивность окраски.

Флюоресцентная гибридизация in situ (Fluorescence in situ hybridization, FISH) - спектральное кариотипирование, состоящее в окрашивании хромосом набором флуоресцентных красителей, связывающихся со специфическими областями хромосом. В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что существенно облегчает выявление таких пар и обнаружение межхромосомных транслокаций, то есть перемещений участков между хромосомами - транслоцированные участки имеют спектр, отличающийся от спектра остальной хромосомы.

Флюоресцентная гибридизация in situ (Fluorescence in situ hybridization, FISH) Флюоресце нтная гибридиза ция in situ, или метод FISH - цитогенетический метод, который применяют для детекции и определения положения специфической последовательности ДНК на метафазных хромосомах или в интерфазных ядрах in situ. При флюоресцентной гибридизации in situ используют ДНК-зонды (ДНК-пробы), которые связываются с комплементарными мишенями в образце. В состав ДНК-зондов входят нуклеозиды, меченные флюорофорами (прямое мечение) или такими конъюгатами, как биотин или дигоксигенин (непрямое мечение).

Определение транслокации t(9; 22)(q 34; q 11) при хроническом миелолейкозе методом FISH ген ABL 1 (хромосомa 9) объединяется с геном BCR (хромосомы 22) – образуется химерный ген BCR-ABL 1. Метафазная пластинка с филадельфийской хромосомой. Хромосомы окрашены в синий цвет, локус ABL 1 - красный цвет, локус BCR - зелёный цвет. Вверху слева - хромосома с перестройкой, отмечена красно-зеленой точкой.

Многоцветная FISH - спектральное кариотипирование, состоящее в окрашивании хромосом набором флуоресцентных красителей, связывающихся со специфическими областями хромосом. В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что существенно облегчает выявление таких пар и обнаружение межхромосомных транслокаций, то есть перемещений участков между хромосомами - транслоцированные участки имеют спектр, отличающийся от спектра остальной хромосомы.

Кариотип 46, XY, t(1; 3)(p 21; q 21), del(9)(q 22) Транслокация между 1 -й и 3 -й хромосомами, делеция 9 -й хромосомы. Маркировка участков хромосом дана как по комплексам поперечных меток (классическая кариотипизация, полоски), так и по спектру флуоресценции (цвет, спектральная кариотипизация).

Похожие публикации