Какое излучение обладает наибольшей способностью. Польза и вред радиоактивного излучения. Проникающая способность радиационного излучения

Понятие «излучение» включает в себя весь диапазон электромагнитных волн, а также электрический ток, радиоволны, ионизирующее излучение. При последнем изменяется физическое состояние атомов и их ядер, превращая их в заряженные ионы или продукты ядерных реакций. Мельчайшие частицы обладают энергией, которая постепенно теряется при взаимодействии со структурными единицами. В результате движения вещество, через которое проникают элементы, ионизируется. Глубина проникновения различна для каждой частицы. Из-за способности изменять вещества радиоактивный свет наносит вред организму. Какие виды излучений существуют?

Корпускулярное испускание. Альфа-частицы

Данный вид представляет собой поток радиоактивных элементов, чья масса отлична от нуля. Примером является альфа и бета-излучение, а также электронное, нейтронное, протонное и мезонное. Альфа-частицы - это ядра атомов, которые испускаются при распаде некоторых радиоактивных атомов. Они состоят их двух нейтронов и двух протонов. Альфа-излучение - это ядра атомов гелия, которые положительно заряжены. Естественное испускание характерно для неустойчивых радионуклидов рядов тория, урана. Альфа-частицы выходят из ядра со скоростью до 20 тысяч км/сек. По пути движения они образуют сильную ионизацию среды, отрывая электроны из орбит атомов. Ионизация лучами приводит к химическим изменениям в веществе, а также к нарушению ее кристаллической структуры.

Характеристика альфа-излучения

Лучи такого вида представляют собой альфа-частицы массой 4,0015 атомных единиц. Магнитный момент и спин равны нулю, а заряд частиц - удвоенному элементарному заряду. Энергия альфа-лучей находится в пределах 4-9 МэВ. Ионизирующее альфа-излучение проявляется при потере атома своего электрона и превращении его в ион. Выбивание электрона происходит за счет большого веса альфа-частиц, которые больше его практически в семь тысяч раз. При прохождении через атом и отрыве каждого отрицательно заряженного элемента частицы теряют свою энергию и скорость. Способность ионизировать материю теряется, когда вся энергия потрачена и альфа-частица преобразуется в атом гелия.

Бета-излучение

Это процесс, при котором электроны и позитроны образуются при бета-распаде элементов от самых легких до самых тяжелых. Бета-частицы сотрудничают с электронами атомных оболочек, передают им часть энергии и вырывают их с орбит. В этом случае образуется положительный ион и свободный электрон. Альфа и бета - излучение обладают разной скоростью движения. Так, для второго вида лучей она приближается к скорости света. Поглотить бета-частицы можно с помощью слоя алюминия толщиной в 1 мм.

Гамма-лучи

Образуются при разложении радиоактивных ядер, а также элементарных частиц. Это коротковолновый тип электромагнитного излучения. Оно образуется при переходе ядра из более возбужденного энергетического состояния в менее возбужденное. Имеет короткую длину волны, поэтому обладает высокой проникающей способностью, что может нанести серьезный вред здоровью человека.

Свойства

Частицы, которые образуются при распаде ядер элементов, могут по-разному взаимодействовать с окружающей средой. Такая связь находится в зависимости от массы, заряда, энергии частиц. К свойствам радиоактивного излучения можно отнести следующие параметры:

1. Проникающую способность.

2. Ионизацию среды.

3. Экзотермическую реакцию.

4. Воздействие на фотоэмульсию.

5. Возможность вызвать свечение люминесцирующих веществ.

6. При длительном воздействии возможны химические реакции и распад молекул. Например, изменяется цвет предмета.

Перечисленные свойства используются при обнаружении излучений по причине неспособности человека улавливать их своими чувствами.

Источники излучений

Существуют несколько причин испусканий частиц. Это могут быть земные или космические объекты, которые содержат радиоактивные вещества, технические устройства, выделяющие ионизирующие излучение. Также причинами появления радиоактивных частиц могут быть ядерно-технические установки, контрольно-измерительные устройства, медицинские препараты, разрушение хранилищ радиационных отходов. Опасные источники делятся на две группы:

  1. Закрытые. При работе с ними излучение не проникает в окружающую среду. Примером будет являться радиационная техника на АЭС, а также аппаратура в рентген-кабинете.
  2. Открытые. В этом случае облучению подвергается окружающая среда. Источниками могут быть газы, аэрозоли, радиоактивные отходы.

Элементы ряда урана, актиния и тория являются естественными радиоактивными элементами. При их распаде происходит излучение альфа-, бета-частиц. Источниками альфа-лучей является полоний с атомной массой 214 и 218. Последний представляет собой продукт распада радона. Это ядовитый в больших количествах газ, который проникает из почвы и накапливается в подвалах домов.

Источники альфа-излучения высоких энергий представляют собой разнообразные ускорители заряженных частиц. Одним из таких устройств является фазотрон. Он представляет собой циклический резонансный ускоритель с постоянным управляющим магнитным полем. Частота ускоряющего электрического поля будет медленно изменяться с периодом. Частицы движутся по раскручивающийся спирали и ускоряются до энергии, равной 1 ГэВ.

Способность проникать через вещества

Альфа-, бета-, гамма-излучения обладают определенным пробегом. Так, движение альфа-частиц в воздухе составляет несколько сантиметров, когда бета-частицы способны пройти несколько метров, а гамма-лучи - до сотни метров. Если человек испытал внешнее альфа-излучение, проникающая способность которого равна поверхностному слою кожи, то он будет в опасности только в случае открытых ран на теле. Сильный вред наносит употребление пищи, облученной данными элементами.

Бета-частицы могут внедриться в организм только на глубину не больше 2 см, а вот гамма-частицы способны вызвать облучение всего тела. Лучи последних частиц могут задержать только бетонные или свинцовые плиты.

Альфа-излучение. Влияние на человека

Энергии этих частиц, образующихся при радиоактивном распаде, не хватит на преодоление начального слоя кожи, поэтому внешнее облучение не несет вреда организму. Но если источником образования альфа-частиц служит ускоритель и их энергия достигает выше десятков МэВ, то угроза нормальному функционированию организма присутствует. Огромный вред наносит непосредственное проникновение внутрь тела радиоактивного вещества. Например, через вдыхание отравленного воздуха или через пищеварительный тракт. Альфа-излучение способно в минимальных дозах вызвать у человека развитие лучевой болезни, которая часто заканчивается смертью пострадавшего.

Альфа-лучи нельзя обнаружить с помощью дозиметра. Попав в организм, они начинают облучать близлежащие клетки. Организм вынуждает клетки делиться быстрее, чтобы возобновить пробел, но заново рожденные опять подвергаются вредному воздействию. Это приводит к потере генетической информации, мутациям, образованию злокачественных опухолей.

Допустимые пределы облучения

Норма ионизирующего излучения в России регулируется «Нормами радиационной безопасности» и «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений». Согласно данным документам, пределы облучения разработаны для следующих категорий:

1. «А». К ней относятся сотрудники, которые работают с источником излучений на постоянной основе или временно. Допустимый предел рассчитывается как индивидуальная эквивалентная доза внешнего и внутреннего излучения за год. Это так называемая предельно допустимая доза.

2. «Б». Категория включает часть населения, которая может подвергаться воздействию источников облучения, так как проживает или работает рядом с ними. В этом случае также рассчитывается допустимая доза за год, при которой в течение 70 лет не будут происходить нарушения здоровья.

3. «В». К типу относится население области, края или страны, попавшее под излучение. Ограничение облучения происходит с помощью введения норм и контроля радиоактивности объектов в окружающей среде, вредных выбросов с АЭС, учитывая дозовые пределы для предыдущих категорий. Влияние излучений на население не подлежит регламенту, так как уровни облучения очень низки. В случаях радиационной аварии в регионах применяются все необходимые меры безопасности.

Меры безопасности

Защита от альфа-излучения не представляет собой проблемы. Радиационные лучи полностью задерживаются плотным листом бумаги и даже человеческой одеждой. Опасность возникает только при внутреннем облучении. Чтобы избежать его, используются средства индивидуальной защиты. К ним относятся спецодежда (комбинезоны, шлемы из молескина), пластиковые фартуки, нарукавники, резиновые перчатки, специальная обувь. Для защиты глаз применяются щитки из оргстекла, также используются дерматологические средства (пасты, мази, кремы), респираторы. На предприятиях прибегают к мерам коллективной защиты. Что касается защиты от газа радона, способного накапливаться в подвалах, ванных комнатах, то в этом случае необходимо часто проветривать помещения, а подвалы изнутри изолировать.

Характеристика альфа-излучения приводит нас к выводу о том, что данный вид имеет низкую пропускную способность и не требует серьезных мер защиты при внешнем облучении. Большой вред наносят эти радиоактивные частицы при проникновении внутрь организма. Элементы данного вида распространяются на минимальные расстояния. Альфа-, бета-, гамма-излучения отличаются друг от друга своими свойствами, проникающей способностью, влиянием на окружающую среду.

Высокорадиоактивный фон (смог) – продукт распада атомов с последующим изменением их ядер. Элементы, обладающие этой способностью, считаются высокорадиоактивными. Каждое соединение наделено определенной способностью проникать в организм и вредить ему. Бывают природными и искусственными. Наиболее сильной проникающей способностью обладает гамма-излучение – его частицы способны проходить сквозь тело человека, считаются очень опасными для здоровья человека.

Люди, работающие с ними, должны носить спецодежду, поскольку их влияние на здоровье может быть очень сильным – это зависит от вида излучения.

Разновидности и особенности излучений

Существует несколько разновидностей радиации. Людям по роду деятельности приходится сталкиваться с ней – кому каждый день, кому время от времени.

Альфа-радиация

Частицы гелия, несут отрицательный заряд, образуются в процессе распада тяжелых соединений природного происхождения – тория, радия, других веществ этой группы. Потоки с альфа-частичками не могут проникать сквозь твердые поверхности и жидкость. Человеку для защиты от них достаточно быть просто одетым.

Данный вид излучения располагает большей мощностью в сравнении с первым видом. Для защиты человеку потребуется плотный экран. Продуктом распада нескольких радиоактивных элементом выступает поток позитронов. Выделяются от электронов только зарядом – они носят положительный заряд. Если на них воздействует магнитное поле, отклоняются и двигаются в обратном направлении.

Гамма-радиация

Образуется в процессе распада ядер у многих радиоактивных соединений. Излучение обладает высокой проникающей способностью. Характеризуется жесткими электромагнитными волнами. Для защиты от их воздействия потребуются экраны, изготовленные из металлов, способных хорошо защитить человека от проникновения. Например, из свинца, бетона или водяные.

Рентгеновское излучение

Данные лучи обладают большой проникающей способностью. Может образовываться в рентгеновских трубках, электронных установках типа бетатрона и ему подобным. Характер действия этих радиоактивных потоков очень сильный, что и позволяет утверждать, что рентгеновский луч наделен способностью сильного проникновения, а значит – опасен.

Во многом похожий на вышеупомянутый, отличается только протяженностью и происхождением лучей. Рентгеновский поток имеет длиннее волну с низкой частотой излучения.

Ионизация здесь осуществляется в основном путем выбивания электронов. А за счет расхода собственной энергии вырабатывается в незначительном количестве.

Бесспорно, наибольшую проникающую способность имеют лучи этого излучения, особенно жесткие.

Какой тип излучения наиболее опасный для людей

Самые жесткие кванты имеют рентгеновские волны и гамма-излучение. У них самые короткие волны, следовательно, больше коварства и опасности несут человеческому организму. Коварство их поясняется тем, что человек не чувствует их воздействия, но хорошо ощущает последствия. Даже в малых дозах облучения в организме происходят необратимые процессы и мутации.


Передача информации внутри человека носит электромагнитный характер. Если в организм проникает мощный луч облучения, то этот процесс нарушается. Человек вначале чувствует легкое недомогание, а позже патологические нарушения – гипертонию, аритмию, нарушения гормональной природы и другие.

Самая низкая способность проникновения у альфа-частиц, поэтому они считаются самыми, если так можно сказать, безопасными для человека. Бета-радиация намного мощнее и ее проникновение в организм более опасное. Наибольшей проникающей способностью обладает излучение гамма-частицами и рентгеновские лучи. Они способны проходить насквозь человека, защититься от них намного тяжелее, остановить их может только бетонная конструкция или свинцовый экран.

Как определяется электромагнитный смог в жилой квартире

В каждой благоустроенной квартире имеется определенный уровень радиоактивных волн. Они исходят от бытовых электронных приборов и устройств. Определяется электромагнитный смог специальным прибором – дозиметром. Хорошо, когда он имеется, если его нет, то выявить их можно и другим способом. Для этого нужно включить все электрические приборы и обычным радиоприемником проверить уровень излучения каждого из них.

Если в нем возникают помехи, слышен писк, посторонние помехи и треск, то рядом находится источник смога. И чем ощутимее они, тем мощнее и сильнее электромагнитные излучения из него исходят. Источником смога могут служить стены квартиры. Любые действия жильцов в защиту собственного организма от их воздействия – залог здоровья.

Навигация по статье:


Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют - ионизирующее излучение или что чаще встречается радиоактивное излучение , или еще проще радиация . К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация - это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация - это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.



Альфа, бета и нейтронное излучение - это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение - это излучение энергии.


Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение - это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое


Нейтронное излучение - это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация:
  • биологическое действие радиации: низкое

Гамма (γ) излучение - это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения - это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение - это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.


Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!



Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.




Видео:


Бета-излучение представляет собой поток электронов или позитронов, излучаемых ядрами атомов радиоактивных веществ при радиоактивном распаде. Максимальный пробег в воздухе составляет 1800 см, а в живых тканях - 2,5 см. Ионизирующая способность р-частиц ниже, а проникающая способность выше, чем ос-частиц, так как они обладают значительно меньшей массой и при одинаковой с а-частицами энергии имеют меньший заряд.

Нейтронное излучение - поток нейтронов, которые преобразуют свою энергию в упругих и неупрутах взаимодействиях с ядрами атомов. При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как ич заряженных частиц, так и из гамма-квантов (гамма-излучения). При упругих взаимодействиях возможна обычная ионизация вещества. Проникающая способность нейтронов большая.

Вода является наиболее широко применяемым средством тушения. Она обладает значительной теплоемкостью и весьма высокой теплотой испарения (-2,22 кДж/г), благодаря чему она оказывает сильное охлаждающее действие на очаг пожара. К наиболее существенным недостаткам воды относятся ее недостаточная смачивающая (и, следовательно, проникающая) способность при тушении волокнистых материалов (древесина, хлопок и др.) и высокая подвижность, ведущая к большим потерям воды и порче окружающих предметов. Для преодоления этих недостатков к воде добавляют вещества поверхностноактивные (смачиватели) и повышающие вязкость (натрийкарбоксиметилцеллюлоза).

Во взрывоопасных помещениях применяют радиоизотопные нейтрализаторы, действие которых основано на ионизации воздуха альфа-излучением плутония-239 и бета-излучением прометия- 147. Проникающая способность альфа-частиц в воздухе составляет несколько сантиметров, поэтому применение альфа-источника безопасно для персонала.

В зависимости от размера капель струи бывают капельные (диаметр капель>0,4 мм), распыленные (диаметр капель 0,2- 0,4 мм) и мелкораспыленные (ту-манообразные, диаметр капель
При тушении водяными струями существенное значение имеет их проникающая способность, которая определяется напором

Напор водяной струи определяется экспериментально по скорости движения капель и увлекаемого ими потока воздуха. Проникающая способность убывает с уменьшением напора струи и размера капель. При диаметре капель более 0,8 мм проникающая способность не зависит от напора струи.

Радиоактивные изотопы выделяют невидимые глазом излучения различного вида: а-лучи (альфа-лучи), 3-лучи (бета-лучи), улучи (гамма-лучи) и нейтроны. Они способны проникать через твердые, жидкие и газообразные тела, причем для различных видов излучений проникающая способность неодинакова: наибольшей проникающей способностью обладают улучи. Для того чтобы их задержать, необходим слой свинца толщиной приблизительно 15 см. }

Похожие публикации