Коллоидный тип. Коллоиды и коллоидные растворы. Коллоидные свойства галогенидов серебра

Коллоидные системы широко распространены в природе и с момента появления человека играют важную роль в его жизни.

Изучая свойства смесей вода - хлорид серебра, вода - сера, вода - берлинская лазурь и др., итальянский ученый Ф. Сельми (1845) установил, что при определенных условиях они образуют гомогенные по внешнему виду системы, похожие на растворы. Однако эти системы, в отличие от водных растворов хлорида натрия, сульфата меди и других хорошо растворимых в воде веществ, самопроизвольно не образуются. Подобные системы Ф. Сельми предложил называть псевдорастворами.

Т. Грэм (1861), изучая подобные системы, установил, что одни вещества (гидроксид калия, сульфат калия, сульфат магния, сахароза и др.) обладают большой скоростью диффузии и способностью проходить через растительные и животные мембраны, тогда как другие (белки, декстрин,

желатин, карамель и др.) характеризуются малой скоростью диффузии и отсутствием способности проходить через мембраны.

Первая группа веществ достаточно легко кристаллизуется, в то время как вторая после удаления растворителя образует клееподобные массы. Первую Т. Грэм назвал кристаллоидами , а вторую - коллоидами (от греч. "κολλά" - клей, "λεδεσ" - вид). Кристаллоиды образуют истинные растворы, тогда как коллоиды - золи (коллоидные растворы).

В 1899 г. русский ученый И. Г. Борщов высказал предположение, что многие вещества, способные образовывать коллоидные растворы, имеют кристаллическое строение, и поэтому следует говорить не об особых веществах-коллоидах, а о коллоидном состоянии.

В начале прошлого века профессор Санкт-Петербургского горного института Π. П. Веймарн экспериментально доказал, что подразделение на коллоиды и кристаллоиды весьма условно. Типичные кристаллоиды ЫаС1, ΚΙ и др. могут образовывать коллоидные растворы в подходящих растворителях, например, коллоидный раствор ЫаС1 в бензоле.

Наконец, было доказано, что одно и то же вещество в одном и том же растворителе в зависимости от ряда условий может проявлять себя и как коллоид, и как кристаллоид. Такие вещества было предложено называть полуколлоидами. Коллоидные растворы (коллоидные системы) являются частным случаем дисперсных систем.

Дисперсной системой называют систему, состоящую из дисперсной фазы - совокупности раздробленных частиц и непрерывной дисперсионной среды, в которой во взвешенном состоянии находятся эти частицы.

Для характеристики раздробленности дисперсной фазы используют степень дисперсности 8, которая измеряется величиной, обратной среднему диаметру частиц с1

Растворы, рассмотренные выше, представляют собой системы, в которых растворенное вещество распадается на отдельные молекулы и ионы. Граница (поверхность раздела) между растворенным веществом и растворителем отсутствует, и раствор представляет собой однофазную систему, так как понятие поверхности неприменимо к отдельным атомам, молекулам и ионам. В жидкой среде могут находиться агрегаты веществ, состоящие из большого числа молекул и ионов. Частицы, имеющие диаметр порядка 1 мкм (10 -6 м), проявляют обычные свойства данного вещества. В случае твердого вещества эти частицы представляют собой кристаллы, а в случае жидкости - мелкие капли. Частицы такого размера содержат миллионы структурных единиц. При образовании в растворе в результате химических реакций они довольно быстро оседают на дно сосуда.

Особые свойства приобретают вещества в случае, если частицы имеют размер 10 -9 -10 -7 м (1 - 100 нм). Системы, состоящие из частиц такого раз-

мера, называют коллоидно-дисперсными. Суммарная поверхность системы, состоящей из частиц такого размера, достигает необычайно большой величины. Например, 1 г вещества при размере частиц К) -8 м будет иметь поверхность порядка нескольких сотен квадратных метров.

По степени дисперсности различают две группы систем: грубодисперсные и коллоидно-дисперсные.

Системы с размером частиц меньше чем 10 -9 м иногда неправильно называют ионно-молекулярными дисперсными системами. У этих систем отсутствует основной характерный признак дисперсных систем - гетерогенность. Поэтому такие системы являются гомогенными и называются истинными растворами.

В зависимости от агрегатного состояния дисперсной фазы и дисперсионной среды различают восемь видов коллоидных систем (табл. 23.2).

Необходимо отметить, что коллоидных систем, образованных газами, в обычных условиях не существует по той причине, что газы неограниченно смешиваются между собой.

Таблица 23.2

Классификация коллоидных систем по агрегатному состоянию фаз

Агрегатное

состояние

Тип системы

Агрегатное состояние дисперсной фазы

Условное

обозначение

Название

Аэрозоль

Жидкость

Твердое тело

Жидкость

Жидкость

Эмульсоид

Твердое тело

Суспензоид

Твердое тело

Солидозоль

Твердая пена

Жидкость

эмульсоид

Твердое тело

Без названия

Способы получения и очистки коллоидных систем. Для получения коллоидных растворов необходимо: 1) достичь коллоидной степени дисперсности; 2) подобрать дисперсионную среду, в которой нерастворимо вещество дисперсной фазы; 3) подобрать третий компонент - стабилизатор, сообщающий коллоидной системе устойчивость.

Образовывать коллоидные растворы в воде могут металлы, малорастворимые в ней оксиды, гидроксиды, кислоты, соли. В качестве стабилизаторов используют вещества, препятствующие агрегации (объединению) коллоидных частиц в более крупные и выпадению их в осадок.

По способу достижения коллоидной степени дисперсности различают методы (рис. 23.22):

  • - диспергационные (от лат. "сПэре^ге" - измельчать) - получение частиц дисперсной фазы путем дробления более крупных частиц;
  • - конденсационные (от лат. - укрупнять) - получение частиц дисперсной фазы путем объединения атомов, молекул, ионов.

Рис. 23.22.

Коллоидные растворы, полученные одним из рассмотренных методов, содержат примеси растворенных низкомолекулярных веществ и грубо- дисперсных частиц, наличие которых может отрицательно сказываться на свойствах золей, снижая их устойчивость. Для очистки коллоидных растворов от примесей используют фильтрацию, диализ, электродиализ и ультрафильтрацию.

Фильтрация основана на способности коллоидных частиц проходить через поры обычных фильтров. При этом более крупные частицы задерживаются. Фильтрацию используют для очистки коллоидных растворов от примесей грубодисперсных частиц.

Диализ - удаление с помощью мембран истинно растворенных низкомолекулярных соединений из коллоидных растворов. При этом используют свойство мембран пропускать молекулы и ионы обычных размеров. Все диализаторы построены по общему принципу: диализируемая жидкость находится во внутреннем сосуде, в котором она отделена от растворителя мембраной (рис. 23.23). Скорость диализа возрастает с увеличением поверхности мембраны, ее пористости и размера пор, с повышением температуры, интенсивности перемешивания, скорости смены внешней жидкости и с уменьшением толщины мембраны.

Для увеличения скорости диализа низкомолекулярных электролитов в диализаторе создают постоянное электрическое поле. Скорость диализа можно увеличить, если диализируемый раствор продавливать через мембрану (ультрафильтр). Такой способ очистки систем, содержащих частицы коллоидных размеров, от растворов низкомолекулярных веществ называют ультрафильтрацией.

Рис. 23.23.

  • 1 - диализируемая жидкость: 2 - растворитель; 3 - диализная мембрана;
  • 4 - мешалка

Что представляют собой все живые организмы? Мы знаем еще со школы, что человек, например, состоит из разных тканей, костей и т.д. Знаем, что на 80% (на самом деле меньше) он состоит из воды. Так вот, люди - это, фактически, большие ходячие коллоидные растворы. И чтобы знать, как их лучше лечить, надо хорошо понимать, что собой представляют эти вещества. Раздел химии, занимающийся изучением коллоидального жизненного субстрата, сравнительно молод, но в последние годы интерес к нему значительно возрос.

Что такое коллоиды?

Собственно, не совсем правильно говорить о коллоидных веществах. Скорее, речь идет о коллоидальном состоянии вещества. Чем же оно отличается от любого другого? Коллоидные растворы - это те же дисперсные материи, которые отличаются низкой концентрацией в растворе взвешенных частиц (почему возникает и частицы обладают высокой и очень маленькими их размерами. До того маленькими, что их невозможно увидеть в обычный микроскоп. растворов субмикроскопичны. Но это все-таки не растворы в полном смысле, потому что растворами принято считать тоже только на молекулярно-ионном уровне. В то же время, это не суспензии с эмульсиями, характеризующиеся как дисперсные системы с достаточно крупными частицами. Коллоиды занимают промежуточную ступеньку.

Классификация коллоидов

Коллоиды не обязательно должны быть жидкими, они могут находиться и в твердом состоянии. Тогда их называют студнями или гелями. Но, в отличие от не имеют четкой грани между различными агрегатными состояниями, и могут переходить из одного состояния в другое при изменении внешних факторов, например температуры.

Кроме того, в зависимости от дисперсной среды, коллоидные растворы могут быть гидрозолями и гидрогелями, если основой является вода, или алкозолями (если основа - спирт), этерозолями (эфир) и т.д. Дисперсной средой пирозолей является какое-то расплавленное тело, а криозолей - наоборот, низкотемпературное вещество.

Для нас, собственно, важно, что на фармацевтическом рынке стали появляться первые коллоидные растворы, в медицине они способны произвести переворот, так как воздействуют на наш организм на качественно ином уровне.

Основные возможности коллоидной фармацевтики.

Мы уже знаем, что состав всех внутренних органов человеческого организма - это коллоидные растворы. А это значит, взаимодействие двух идентичных по химическим свойствам веществ происходит значительно быстрее и практически без потерь. То есть биологически активные ингредиенты лекарственного препарата на 98% сразу проникают в ткани и органы человека именно благодаря структурному сходству составов.

По этой же причине из коллоидных фитоформул начинают усваиваться уже в полости рта через слизистую. Ведь обычные лекарства наш организм вначале доводит до коллоидного состояния в желудочно-кишечном тракте, а потом усваивает. Тут же ему предлагают уже готовый к использованию раствор. Значит эффект от лекарства наступает незамедлительно.

Усовершенствование достаточно сложных технологий производства коллоидов дало возможность в один раствор вместить совершенно разные ингредиенты, получая высокоэффективные препараты, способные воздействовать на организм комплексно практически без побочных эффектов (ведь печени не нужно ничего перерабатывать, а почкам выводить).

К таким относятся инновационные препараты новосибирской (основанной при академгородке еще 1996 году) компании Арго, коллоидные растворы которой практически уникальны. Уже разработаны фитоформулы АнгиОмега, Анти-Оксидант, АртроКомплекс, Детокс, ГастероКомплекс и другие биологически активные формулы, ценность которых трудно переоценить.

Данное издание создано в помощь студентам вузов, которые хотят быстро подготовиться к экзаменам и сдать сессию без проблем. Пособие составлено с учетом Государственного образовательного стандарта.

5. Коллоиды. Примеры коллоидных систем, их распространенность в природе и значение для современной технологии

Дисперсионные микрогетерогенные системы, частицы дисперсной фазы которых имеют размеры 10 –7 –10 –9 м и равномерно распределены в дисперсной среде, называют коллоидными растворами .

1. Суспензоиды (или лиофобные коллоиды , необратимые коллоиды). Так называют коллоидные растворы металлов, их оксидов, гидроксидов, сульфидов и других солей. Первичные частицы дисперсной фазы коллоидных растворов этих веществ по внутренней структуре не отличаются от структуры соответствующего вещества и имеют кристаллическую решетку. Суспензоиды – типичные коллоидные системы с сильно развитой межфазной поверхностью. От суспензий они отличаются более высокой дисперсностью, но, как и суспензии, не могут длительно существовать в отсутствие стабилизатора дисперсности. Для получения устойчивых коллоидных растворов добавляют стабилизатор дисперсной системы ионной или молекулярной природы. Ионная стабилизация связана с присутствием электролитов, создающих ионные пограничные слои между дисперсной фазой и дисперсионной средой. Высокомолекулярные соединения (белки, полипептиды, поливиниловый спирт), добавляемые для стабилизации, называют защитными коллоидами. Адсорбируясь на границе раздела фаз, они образуют в поверхностном слое сетчатые структуры, создающие структурно-механический барьер, препятствующий объединению частиц дисперсной фазы. Структурно-механическая стабилизация имеет решающее значение для стабилизации взвесей, паст, пен, концентрированных эмульсий. Осадки, остающиеся при их выпаривании, не образуют вновь золя при контакте с дисперсионной средой. Вязкость этих золей незначительно отличается от вязкости дисперсионной среды.

2. Мицеллярные коллоиды . Их называют также полуколлоидами (семиколлоидами). Они возникают при достаточной концентрации дифильных молекул низкомолекулярных веществ путем их ассоциации в мицеллы сферической или пластинчатой формы. Мицеллы представляют собой скопления правильно расположенных молекул, удерживаемых преимущественно дисперсионными силами. Образование мицелл характерно для водных растворов моющих веществ, например мыл и синтетических моющих веществ, некоторых органических красителей, дубящих веществ (таннидов), алкалоидов. В других средах, например в этаноле, эти вещества образуют молекулярные растворы.

3. Молекулярные, или лиофильные коллоиды . Их называют обратимыми, т. к. после выпаривания их растворов и добавления новой порции растворителя сухой остаток вновь переходит в раствор. К ним относятся природные и синтетические высокомолекулярные вещества с молекулярной массой от 10 000 до нескольких миллионов. Молекулы этих веществ имеют размеры коллоидных частиц, поэтому такие молекулы называют макромолекулами. Для получения растворов молекулярных коллоидов достаточно привести сухое вещество в контакт с подходящим растворителем. Неполярные макромолекулы растворяются в углеводородах (например, каучуки – в бензоле), а полярные макромолекулы – в полярных растворителях (например, некоторые белки – в воде). Их растворы имеют значительную вязкость, возрастающую с увеличением концентрации растворов. Повышение концентрации макромолекулярных растворов, добавки веществ, понижающих растворимость полимера, и часто понижение температуры приводят к застудневанию – превращению сильно вязкого раствора в сохраняющий форму твердообразный студень. Растворы полимеров с сильно вытянутыми макромолекулами застудневают при небольшой концентрации раствора. Так, желатин и агар-агар образуют студни и гели в 0,2–1,0 %-ных растворах. Высушенные студни способны вновь набухать (существенное отличие от гелей).

Коллоиды широко распространены в природе, технике и быту.

  • 1. Возникновение и основные этапы развития коллоидной химии. Предмет и объекты исследований коллоидной химии
  • 2. Основные особенности дисперсных систем. Особенности ультрамикрогетерогенного состояния (наносостояния)
  • 3. Различные типы классификации дисперсных систем. Лиофильные и лиофобные дисперсные системы
  • 4. Дисперсность. Удельная поверхность дисперсных систем, методы ее измерения
  • 5. Коллоиды. Примеры коллоидных систем, их распространенность в природе и значение для современной технологии
  • 6. Оптические методы исследования дисперсных систем (нефелометрия, турбидиметрия)
  • 7. Оптические свойства коллоидов. Статическое рассеяние света. Оптическая анизотропия
  • 8. Поглощение света дисперсными системами, уравнение Бугера-Ламберта-Бера. Определение размеров коллоидных частиц
  • 9. Поверхностные явления. Роль поверхностных явлений в процессах, протекающих в дисперсных системах
  • 10. Поверхность раздела фаз. Свободная поверхностная энергия. Поверхностное натяжение. Адсорбция
  • 11. Термодинамическое описание разделяющей поверхности
  • 12. Адсорбция. Площадь, приходящаяся на одну молекулу в адсорбционном слое
  • 14. Закономерности ионного обмена в коллоидных растворах. Ацидоиды. Роль pН в ионном обмене
  • 16. Особенности ионного обмена в амфолитоидах, изоэлектрическое состояние амфолитоидов. Понятие об обменной емкости

Под словом «коллоиды» в настоящее время понимают ультрамикрогетерогенные системы, то есть такие системы, где в так называемой дисперсионной среде взвешены ультрамикроскопические частички, представляющие собой отдельную фазу. Грегем под коллоидами подразумевал вещества, которые, будучи распределены в той или иной жидкости и обнаруживая все внешние признаки обычных растворов, при более детальном изучении резко от последних отличаются.

Он полагал, что различие это кроется в самой природе данного вещества; поэтому он разделил весь вещественный мир на два класса: коллоиды и кристаллоиды. Более поздние исследования показали, однако, что между кристаллоидами и коллоидами не существует какой-либо непреодолимой преграды и что принципиально всякое вещество, дающее в данной жидкости истинный раствор,может образовать в иной жидкости систему со всеми свойствами коллоидов.

Поэтому сейчас правильнее говорить не о коллоидах, а о коллоидном состоянии или о коллоидных системах. Пример: поваренная соль (NaCl) дает в водной среде исключительно истинный раствор, наоборот, будучи распределена в таких жидкостях, как эфир или бензол, не являющихся для нее растворителями, она при известных условиях может дать такие системы, которые по всем своим свойствам и особенностям могут назваться коллоидными системами.

Коллоиды и их особенности

Особенности коллоидных систем, отличающие их, главным образом, от обычных или истинных растворов.

Броуновское движение и связанное с ним осмотическое давление и диффузия. В то время как в истинных растворах частицами, взвешенными в данной жидкости, являются молекулы (раствор сахара в воде), а иногда и ионы (растворы электролитов), частицы коллоидных систем неизмеримо крупнее: они состоят из тысяч, а иногда и из сотен тысяч молекул, соединенных в один плотный комплекс, называемый ядром.

Некоторые коллоидисты полагают, что в природе могут быть вещества с такими крупными молекулами, что эти последние играют роль коллоидных частиц. Этот вопрос пока что приходится считать спорным. При этом не нужно забывать, что сущность дела состоит не в размере молекулы, а в том, чтобы эта молекула могла сыграть роль самостоятельной фазы, т. е. в том, чтобы мы имели основания признать такую систему молекулярной степени дисперсности как микрогетерогенную систему.

Молекулы раствора (или газа), как известно, находятся в непрерывном тепловом хаотическом движении. Такому же движению, хотя в ином, чрезвычайно уменьшенном масштабе, подвержены и частицы коллоидной системы. В силу исторических причин это движение коллоидных частиц носит особое название броуновского движения, однако не нужно забывать, что физическая сущность его совершенно идентична с движением молекулярным.

Разница здесь не качественная, а количественная. То же нужно сказать и о тех свойствах, которые являются непосредственным выражением броуновского движения, а именно - об осмотическом давлении и о диффузии. Осмотическое давление, точно так же, как и газовое, является функцией количества частиц в единице объема или, как принято говорить, функцией частичной концентрации. Такая концентрация в коллоидных системах по сравнению с системами истинно растворенными чрезвычайно мала, а потому и осмотическое давление в них ничтожно. Оно настолько мало, что лишь в самое последнее время удалось найти методы для его количественного определения.

То же самое нужно сказать и о диффузии. Грегем полагал, что диффузия отсутствует у коллоидных систем, и считал это отсутствие диффузии яркой качественной характеристикой коллоидов. Это оказалось неверным и иначе не могло быть, ибо факт существования броуновского или, что то же самое, молекулярного движения частиц логически требовал существования и диффузии. Но этот диффузионный процесс в соответствии с масштабом броуновского движения оказался настолько замедленным, что констатировать его, а тем более измерить количественно удалось лишь в последнее время, использовав все современные технические возможности.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Государственное бюджетное образовательное учреждение города

Гимназия №1518

Свойства и применение коллоидных систем

Выполнила: Назарова Д.В.

ученица 9-1 класса

Научный руководитель:

учитель Белоусова М.Н.

Москва - 2014

Введение

1. Виды коллоидных растворов

1.1 Способы получения

1.2 Основные свойства коллоидов

1.3 Способы очистки: а) диализ б) ультрафильтрация

1.4 Применение

2. Практическая часть

Заключение

Литература

Приложения

Введение

Чистые вещества в природе встречаются очень редко. Коллоидные системы занимают промежуточное положение между грубодисперсными системами и истинными растворами. Они широко распространены в природе.

Глобальная роль коллоидов в естествознании заключается в том, что они являются основными компонентами таких биологических образований как живые организмы. Весь наш организм состоит из коллоидных систем. Существует целая наука - коллоидная химия. Передо мной сразу встал вопрос, почему природа отдает предпочтение именно коллоидному состоянию?

В связи с этим вытекают следующие цель и задачи:

Цель работы: выяснить, что такое коллоидные системы, какими свойствами они обладают.

Задачи: 1. Провести экспериментальные опыты по изучению свойств коллоидных растворов.

2. Ответить на вопрос: почему природа отдает предпочтение именно коллоидному состоянию.

1. Виды коллоидных растворов

Термин «коллоид» был введен в 1861 году английским химиком Томасом Грэмом. В его экспериментах он заметил, что растворы желатина, крахмала и других клееподобных веществ очень отличаются по ряду свойств от растворов неорганических солей и кислот. Название произошло от греческой приставки «коло» - клей. Правильно говорить не о коллоидных веществах, а о коллоидных системах. Этот термин ввел русский ученый П.П. Веймарн в 1908 году. Разнообразие коллоидных систем можно увидеть на картинках.

Частицы коллоидных размеров могут иметь различную внутреннюю структуру. Выделяют несколько основных видов коллоидных систем:

1) дым -- устойчивая дисперсная система, состоящая из мелких твёрдых частиц, находящихся во взвешенном состоянии в газах. Дым -- аэрозоль с размерами твёрдых частиц от 10?7 до 10?5 м. В отличие от пыли -- более грубодисперсной системы, частицы дыма практически не оседают под действием силы тяжести

2) аэрозоль -- дисперсная система, состоящая из взвешенных в газовой среде, обычно в воздухе, мелких частиц. Аэрозоли, дисперсная фаза которых состоит из капелек жидкости, называются туманами, а в случае твёрдых частиц, если они не выпадают в осадок, говорят о дымах (свободнодисперсных аэрозолях), либо о пыли (грубодисперсной аэрозоли).

3) эмульсия -- дисперсная система, состоящая из микроскопических капель жидкости (дисперсной фазы), распределенных в другой жидкости. Самым распространенным представителем этого вида коллоидной системы является молоко.

4) пена -- дисперсные системы с газовой дисперсной фазой и жидкой или твердой дисперсионной средой.

5) гель -- системы, состоящие из высокомолекулярных и низкомолекулярных веществ. Из-за наличия трёхмерного полимерного каркаса (сетки) гели обладают некоторыми механические свойства твёрдых тел (отсутствие текучести, способность сохранять форму, прочность и способность к деформации (пластичность и упругость).

6) суспензия -- это грубодисперсная система с твёрдой дисперсной фазой и жидкой дисперсионной средой.

Вот некоторые примеры коллоидных систем (рис.1-8).

1. 1 Получение коллоидов

Коллоидные системы по степени дисперсности занимают промежуточное положение между молекулярными и грубодисперсными системами. Это определяет два возможных пути их получения:

1) Дисперсионные методы

2) Конденсационные методы.

Дисперсионные методы:

Дисперсионные методы основаны на раздроблении твердых тел до частиц коллоидного размера и образовании таким образом коллоидных растворов. Процесс диспергирования осуществляется различными методами: механическим размалыванием вещества в т.н. коллоидных мельницах, электродуговым распылением металлов, дроблением вещества при помощи ультразвука.

Методы конденсации:

Вещество, находящееся в молекулярно-дисперсном состоянии, можно перевести в коллоидное состояние при замене одного растворителя другим - т.н. методом замены растворителя. В качестве примера можно привести получение золя канифоли, которая не растворяется в воде, но хорошо растворима в этаноле. При постепенном добавлении спиртового раствора канифоли к воде происходит резкое понижение растворимости канифоли, в результате чего образуется коллоидный раствор канифоли в воде. Аналогичным образом может быть получен гидрозоль серы.

1. 2 Основные свойства к оллоидов

Главная особенность коллоидных частиц - их малый размер от 1 до 100 нм.

Коллоидные частицы не препятствуют прохождению света.

Частицы коллоидных систем не выпадают в осадок за счет Броуновского движения.

В прозрачных коллоидах наблюдается рассеивание светового луча (эффект Тиндаля).

Дисперсные частицы не выпадают в осадок

1. 3 Способы очистки коллоидов

Существуют три основных способа очистки коллоидов.

1) Диализ. Простейшим прибором для диализа - диализатором - является мешочек с полунепроницаемой мембраной (коллодий), в который помещается диализируемая жидкость. Мешочек опускается в сосуд с растворителем (водой). Меняя растворитель, можно добиться практически полной очистки от нежелательных примесей. Скорость диализа обычно крайне низка. Ускоряют процесс диализа, увеличивая площадь мембраны и температуру, непрерывно меняя растворитель. Материал, прошедший через мембрану называется диализат.

2) Ультрафильтрация - фильтрование коллоидных растворов через полупроницаемую мембрану, пропускающую дисперсионную среду с примесями и задерживающую частицы дисперсной фазы или макромолекулы. Для ускорения процесса ультрафильтрации ее проводят при перепаде давления по обе стороны мембраны: под вакуумом или повышенным давлением.

Ультрафильтрация есть не что иное, как диализ, проводимый под давлением.

1. 4 Применение

Коллоидные системы широко распространены в природе: почва, глина, природные воды, многие минералы, драгоценные камни. Биологические жидкости: кровь, плазма, лимфа, спинномозговая жидкость, ядерный сок, цитоплазма. С химической точки зрения организм в целом - это совокупность многих коллоидных систем. В состав любого живого организма входят твердые, жидкие и газообразные вещества, находящиеся в сложном взаимоотношении с окружающей средой. Цитоплазма клеток обладает свойствами, характерными, как для жидких, так и студнеобразных веществ.

Большое значение имеют коллоидные системы не только для биологии, но и для медицины, косметологии, пищевой промышленности.

Свойства коллоидов необходимо учитывать при их использовании, например явление синерезиса (самопроизвольного уменьшения объема геля, сопровождающееся отделением жидкости) определяет сроки годности пищевых, медицинских и косметических веществ: гелей, мазей, мармелада, холодца, киселя. Для теплокровных животных очень важен биологический синерезис, который сопровождает свертывание крови. Под действием факторов растворимый белок крови фибриноген превращается в нерастворимый фибрин, сгусток которого и закупоривает рану. Если этот процесс затруднен, то говорят о возможности заболевания человека гемофилией.

Используются человеком и способы очистки коллоидов, так например, принцип компенсационного диализа (принцип метода в том, что в диализаторе вместо чистого растворителя используют растворы определяемых низкомолекулярных веществ различной концентрации.) был использован при создании аппарата, названного «искусственной почкой». С помощью него можно очищать кровь больного от различных продуктов обмена, замещая временно функцию больной почки при таких показаниях, как острая почечная недостаточность, например в результате отравлений.

Коллоидная химия играет большую роль в разработке эффективных методов охраны окружающей среды. Одна из главных проблем в этой области - очистка воды от различных загрязнений. Характерный пример - загрязнение водоёмов и рек белковыми веществами, содержащимися в сточных водах предприятий пищевой промышленности.

Особенно эффективная очистка достигается с помощью пен, обладающих определёнными коллоидно-химическими характеристиками. Другой пример - загрязнение поверхности воды нефтью при авариях танкеров. Нефтяное пятно может распространяться на очень большие расстояния от места аварии. Законы коллоидной химии и поверхностных явлений позволяют рекомендовать возможные приёмы блокирования растекания нефти и её сбора.

коллоидный биологический медицина косметология

2. Практическая часть

В ходе работы мною были проведены следующие опыты:

1. Получение коллоидных систем.

А) KMnO2+Na2S2O3=

Б) AgNO3 + KI = AgI + KNO3

2. Описание работы

3. Эффект Тиндаля

В наших опытах использовались прозрачные емкости - стеклянные цилиндры, химические стаканы, и лампа, дающая направленный пучок света (карманный фонарик).

Заключение

В результате изучения литературы и проведения практических опытов я могу предположить, природа отдает предпочтение именно коллоидному состоянию потому, что:

Вещество в коллоидном состоянии имеет большую поверхность раздела между фазами. А это способствует лучшему протеканию обмена веществ.

Биологический синерезис (самопроизвольное уменьшение объема геля, сопровождающееся отделением жидкости) играет важную роль в процессе свертывания крови.

Явление коагуляции (слипания коллоидных частиц) при изменении кислотно-щелочной среды лежит в основе пищеварения.

Вся природа - организмы животных и растений, гидросфера и атмосфера, земная кора и недра - представляет собой сложную совокупность множества разнообразных и разнотипных грубодисперсных и коллоидно-дисперсных систем. Дисперсное состояние вполне универсально и при соответствующих условиях в него может перейти любое тело.

В практической части проделали опыты, позволяющие познакомиться с эффектом Тиндаля

Из коллоидов, богатых белками соединительной ткани (аминокислоты пролин и глицин), состоят кожа, мышцы, ногти, волосы, кровеносные сосуды, легкие, весь желудочно-кишечный тракт и многое другое, без чего немыслима сама жизнь.

Применение коллоидов находит все большее применение в медицинской практике.

От использования простых коллоидных золей для местной заживляющей терапии и применения солей алюминия и магния для понижения кислотности желудка, до использования гидроокиси алюминия в качестве стабилизатора и носителя лекарственных веществ.

Знания коллоидной химии необходимы и востребованы в наше время, что находит подтверждение в моих словах.

Литература

1. Шаде Г., Физическая химия во внутренней медицине, Л.,1930

2. Пасынский А.Г., Коллоидная химия, 3 изд., М., 1968

3. Г.Е. Рудзитис. Химия 11 класс. М., Просвещение, 2009 г.

4. Л.М. Пустовалова, И.Е. Никанорова. Химия, Кнорус.

5. Физколлоидная химия. Учебник для высшей школы. М., Просвещение, 1988 г.

6. Сайт с формулами коллоидов

Приложение

Примеры коллоидных систем

Рис. 1. Продукты питания

Рис. 2. Нефть

Рис. 3. Коллоидное серебро

Рис. 4. Гели для бритья

Рис. 5. Туман

Рис. 6. Обработанный алмаз

Рис. 7. Кровь

Кровь является типичными примером ткани организма, где одни коллоиды находятся внутри других. В.А. Исаев дает определение крови как дисперсной системе, в которой форменные элементы - эритроциты, тромбоциты, лейкоциты являются фазой, а плазма - дисперсной средой.

Размещено на Allbest.ru

...

Подобные документы

    Коллоидная химия как наука, изучающая физико-химические свойства гетерогенных, высоко-дисперсных систем и высоко-молекулярных соединений. Производство и методы очищения коллоидных растворов. Применение гелей в пищевой промышленности, косметике и медицине.

    презентация , добавлен 26.01.2015

    Классификация дисперсных систем. Основные факторы устойчивости коллоидных растворов. Методы их получения (диспергирование, конденсация) и очистки (диализ, ультрафильтрация). Мицеллярная теория строения коллоидных частиц. Коагуляция смесями электролитов.

    презентация , добавлен 28.11.2013

    Сущность и определяющие признаки коллоидных систем. Основные свойства и строение растворов такого типа. Характеристика эффекта Тиндаля. Различия гидрозолей и органозолей. Способы образования коллоидных систем, специфические свойства, сфера применения.

    презентация , добавлен 22.05.2014

    Способы получения коллоидных систем; факторы, влияющие на скорость отдельных стадий процесса, правила коагуляциии. Астабилизирующее действие низкомолекулярных примесей в коллоидных растворах, методы их удаления: диализ, электродиализ и ультрафильтрация.

    презентация , добавлен 17.09.2013

    Понятие коллоидной системы. Коллоидная химия. Развитие представлений о коллоидных системах, их типы и свойства. Лиофобные золи. Лиофильные коллоиды и области приминения коллоидов. Коллоидно-химическая физиология человека, клеток и тканей организма.

    реферат , добавлен 28.06.2008

    Хитозан: строение, физико-химические свойства, измельчение, хранение и получение. Применение в медицине, аналитической химии, бумажной и пищевой промышленности, в косметологии. Характеристика химического состава панциря, органолептические показатели.

    практическая работа , добавлен 17.02.2009

    Первые практические сведения о коллоидах. Свойства гетерогенных смесей. Соотношение между поверхностью коллоидной частицы и объемом коллоидной частицы. Своеобразие дисперсных систем. Особенности коллоидных растворов. Классификация дисперсных систем.

    презентация , добавлен 17.08.2015

    Особенности получения коллоидных систем. Теоретический анализ процессов формирования кварцевых стекол золь-гель методом. Получение золь-коллоидных систем по "гибридному" методу. Характеристика свойств квантовых стекол, активированных ионами европия.

    курсовая работа , добавлен 14.02.2010

    Понятие и химический состав агар-агара, способы и методы его получения, их сравнительная характеристика, главные этапы, оценка преимуществ и недостатков. Особенности и направления использования агар-агара и агарозы в сферах промышленности и медицине.

    реферат , добавлен 06.10.2014

    Бензойная кислота C6H5СООН - простейшая одноосновная карбоновая кислота ароматического ряда: история; физические свойства и способы получения; лабораторный синтез; применение в калориметрии, в пищевой промышленности, медицине; воздействие на здоровье.

Похожие публикации